
Alphabetic Coding with Exponential Costs✩

Michael B. Baer

VMware, Inc., 71 Stevenson St., 13th Floor, San Francisco, CA 94105-0901, USA

Abstract

This note considers an alphabetic binary tree formulation in a family of nonlinear problems. An application of this family
occurs when a random outcome needs to be determined via alphabetically ordered search within a stochastic time window.
Rather than finding a decision tree minimizing

∑n

i=1 w(i)l(i), this variant involves minimizing loga

∑n

i=1 w(i)al(i) for a
given a ∈ (0, 1). Herein a dynamic programming algorithm finds the optimal solution in O(n3) time and O(n2) space;
methods traditionally used to improve the speed of optimizations in related problems, such as the Hu-Tucker procedure,
fail for this problem. This note thus also introduces two algorithms which can find a suboptimal solution in linear time
(for one) or O(n log n) time (for the other), with associated redundancy bounds guaranteeing their coding efficiency.

Keywords: Approximation algorithms, dynamic programming, information retrieval, Rényi entropy, tree searching

1. Introduction

Applications such as searching[9] and coding theory[7]
make extensive use of binary trees. We denote the length
(number of edges) of a path from the root to node i ∈
{1, 2, . . . , n} of the tree as l(i), and the weight (usually
probability) of the leaf as w(i). Given a set of weights,
Huffman’s algorithm[7] finds a tree minimizing cost func-
tion

n
∑

i=1

w(i)l(i) (1)

and Hu and Tucker’s algorithm [6] finds an optimal alpha-
betic tree:

Definition 1. An alphabetic tree is a tree with leaves
in numerical order given inorder tree traversal (1, 2, . . . , n
from left to right, ignoring internal nodes, which are unla-
beled).

Multiple papers independently considered the problem
of minimizing cost

La(w, l) , loga

n
∑

i=1

w(i)al(i) a > 0, a 6= 1 (2)

for unconstrained (Huffman-like) minimization[6, p. 254]
[11, p. 485] [8, p. 231], the solution of which is very similar
to that of Huffman’s algorithm. All three papers primar-
ily concern a > 1; the first of these — by Hu, Kleitman,
and Tamaki [6] — extends the Hu-Tucker algorithm to

✩Material in this paper was presented at the 2006 International
Symposium on Information Theory, Seattle, Washington, USA.[1]

Email address: mbaer@vmware.com (Michael B. Baer)

solve the alphabetically constrained version of this prob-
lem, whereas Humblet [8] noted that the Huffman-like so-
lution also solves the unconstrained (2) for a < 1, in which
loga x is monotonically decreasing and the objective’s sum-
mation term is thus maximized.

A recent paper showed that the a < 1 problem de-
scribes certain situations of single-shot decision-making[2].
Given a window of time corresponding to a memoryless
random variable, if we wish to find the leaf of the binary
tree through constant-time edge traversal, this is found in
time with probability aLa(w,l) — the tree weight, which we
thus wish to maximize — for some known a < 1. However,
solving the alphabetic version of this problem remained
unaddressed.

Here we present an O(n3) algorithm for minimizing (2)
that is somewhat similar to Gilbert and Moore’s method
[5] for (1). One might posit that similar modifications
of more efficient methods like Hu-Tucker could speed up
the algorithm. However, we show that this is not true for
the aforementioned Hu-Kleitman-Tamaki modification —
which only succeeds for a > 1 — and for a similarly modi-
fied Knuth tree search algorithm[9]. Finally we present two
methods, related to those for the linear problem, which
find suboptimal solutions in O(n) and O(n log n) time,
leading to simple coding efficiency bounds for both these
solutions and the optimal ones.

2. Optimal Alphabetic Trees

Because the alphabetic tree problem imposes leaf or-
der, each decision of which child to take, represented by
a 0 (for left) or 1 (for right), is equivalent to a question
of the form, “Is the output greater than or equal to s?”

Preprint submitted to Information Processing Letters November 11, 2009



Figure 1: Procedure for Finding an Optimal Code

1. Wj,j ← w(j) ∀ j ∈ [1, n], Wj,k ← 0 ∀ 1 ≤ j < k ≤ n
{initialize}

2. for z ← 1 to n− 1 {right index minus left index}

3. for j ← 1 to n− z {left (node) index}

4. for s← j + 1 to j + z {find max split}

5. if Wj,j+z < aWj,s−1 + aWs,j+z

6. Wj,j+z , sj,j+z ← (aWj,s−1 + aWs,j+z , s)

where s is one of the possible symbols, a symbol we call
the splitting point :

Definition 2. The splitting point of an internal node
(or the corresponding subtree that has it as its root) is
the smallest index among the leaves of the right subtree of
that internal node. Each codeword c(i) is the sequence of
bits corresponding to the sequence of decisions (path) to
arrive at leaf i. The overall set of codewords — alphabetic
code C — fully describes the tree, as does length vector l,
the sequence of lengths {l(i)}.

Fig. 1 is our pseudocode adaptation of the dynamic
programming approach of Gilbert and Moore[5] to this
problem (2), and is equivalent to

Wj,k ← a maxs∈{j+1,j+2,...,k} (Wj,s−1 + Ws,k)
starting with Wj,j ← w(j)

(3)

for 1 ≤ j ≤ k ≤ n, operating in O(n3) time (as can be
seen from inner loop 4) and O(n2) space (as can be seen
from initialization step 1). This inductively maximizes
tree weight Wj,k for items j through k for each value of
k− j from 0 to n− 1, thereby minimizing the correspond-
ing optimum tree cost, La(w, l) = loga W1,n. As long
as left and right subtrees of a given (sub)tree are opti-

mal — e.g., for the main tree, W1,s−1 =
∑s−1

i=1 w(i)al(i)−1

and Ws,n =
∑n

i=s w(i)al(i)−1, so that tree weight W1,n is
a(W1,s−1 + Ws,n) — a substitution argument (e.g., [9])
means that, for the best s, the tree will be optimal. Back-
tracking (not shown in Fig. 1) finds the implied tree in a
top-down fashion, each splitting point s for subtree with
range [j, k] denoting two child subtrees of range [j, s − 1]
and [s, k].

Knuth [9] reduced the algorithmic complexity of Gilbert
and Moore’s method for (1) by using the fact that the split-
ting point of an optimal tree of size n must be between the
splitting points of the two optimal subtrees of size n− 1.
With (2), this no longer holds. Consider a = 0.6 with input
weights w = (8, 1, 9, 6). The splitting point of (8, 1, 9) is
s = 3 (w(s) = w(3) = 9, yielding subtrees with (8, 1) and
(9)), and the splitting point of (1, 9, 6) is s = 4 (w(s) = 6).
However, the optimal splitting point of (8, 1, 9, 6) is s = 2
(w(s) = 1).

Similarly, for (2) with a > 1, the Hu-Tucker-Kleitman
method finds an optimal alphabetic solution. The algo-
rithm begins with the input weights arranged as leaves in
numerical order (1, 2, . . . , n in a line). It then combines
the two items i and j that, of all pairs of items with-
out a leaf separating them, have a minimum weight sum,
putting it in the place of either node, both of which are now
(ordered) children. In the original Hu-Tucker algorithm
(equivalent to a approaching 1), this item is given weight
w(i) + w(j), whereas the Hu-Kleitman-Tamaki modifica-
tion uses weight aw(i)+aw(j). Both algorithms then find
the minimum weighted pair among those pairs of distinct
items (uncombined input leaves and combined items) with-
out any uncombined leaf between them, placing the result-
ing node in the place of either original node. Continuing
on, we obtain a tree that is not necessarily alphabetical,
but which has the same lengths as an alphabetic tree which
can be easily reconstructed, (optimally) solving the prob-
lem (for a > 1).

However, consider again a = 0.6, this time for weights
(8, 1, 9, 6, 2). The Hu-Kleitman-Tamaki method first com-
bines 6 and 2, then 8 and 1, then the first combined node
with 9, and finally the remaining two nodes, resulting in a
tree with lengths l

′ = (2, 2, 2, 3, 3) and La(w, l′) ≈ −4.121.
However, a tree with lengths l

′′ = (1, 3, 3, 3, 3), having
La(w, l′′) ≈ −4.232, shows that the Hu-Kleitman-Tamaki
solution is nonoptimal.

Result 1. Knuth’s method for speeding up dynamic pro-
gramming fails for a < 1, as does the Hu-Kleitman-Tamaki
method (which was optimal for a > 1).

3. Suboptimal Algorithms and Bounds

In this section, we add the assertion
∑n

i=1 w(i) = 1 to
our problem, which can be considered an optimization of
(2) with constraints:

1. The binary tree Kraft inequality,
∑n

i=1 2−l(i) ≤ 1;

2. The constraint that l(i) is a natural number;

3. The alphabetic constraint.

All three constraints are necessary to have an alphabetic
code. The first and second of these are necessary and suf-
ficient for the lengths to correspond to a binary tree. Re-
laxing the second and third allows for a numerical solution
which can bound the performance of the optimal solution.
The numerical solution, l†, shown by Campbell [3, 4] is

l† , −
1

1 + log2a
· log2w(i) + log2





n
∑

j=1

w(j)
1

1+log2a



 .

Taking ls(i) , ⌈l†(i)⌉, similarly to a Shannon code, we
have a code that violates only the alphabetic constraint.

In order to obtain a near-optimal solution, the algo-
rithm in Fig. 2 has a linear-time variant patterned after

2



Figure 2: Procedure for Finding a Near-Optimal Code

1. Start with an optimal or near-optimal nonalphabetic
code with length vector l

non, either the Huffman-like
l
h or the Shannon-like l

s.

2. Find the set of all minimal points: i such that 1 <
i < n, lnon(i) < lnon(i− 1), and lnon(i) < lnon(i + 1);
or i ∈ [j, j + k] minimizing w(i) for lnon(j − 1) >
lnon(j) = lnon(j + 1) = · · · = lnon(j + k) < lnon(j +
k + 1).

3. Assign a preliminary alphabetic code with lengths
lpre(i) = lnon(i) + 1 for all minimal points and
lpre(i) = lnon(i) for all other items. The first code-
word is lpre(1) zeros. Each additional codeword c(i)
follows,

(a) if lpre(i) ≤ lpre(i− 1), by truncating c(i− 1) to
lpre(i) bits and adding 1 to the integer that the
binary codeword represents, or,

(b) if lpre(i) > lpre(i − 1), by adding 1 to the inte-
ger/codeword c(i − 1) and appending lpre(i) −
lpre(i− 1) zeros.

4. Traverse the resulting code tree, removing redundant
nodes by replacing any only child with its grandchild
or grandchildren. This process ends with an alpha-
betic code satisfying

∑n

i=1 2−l(i) = 1.

that in [12] — relying on l
s — and an O(n log n)-time vari-

ant patterned after [10] — instead using l
h, those lengths

obtained from the optimal code tree for the problem lack-
ing the alphabetic constraint.

Every step after the first takes linear time with lin-
ear space, thus the overall complexity of the algorithms.
Step 3 is the method by which Nakatsu showed that any
nonalphabetic code can be made into an alphabetic code
with similar lengths[10]. (The use of weights as a tie
breaker and the nonlinearity of the problem do not change
the validity of the algorithm.) Step 4 is the method by
which Yeung showed that any alphabetic code can be made
into another alphabetic code with

∑n

i=1 2−l(i) = 1 without
lengthening any codewords[12]. Thus this is a hybrid and
extension of these two approaches.

For w = (8/26, 1/26, 9/26, 6/26, 2/26) with a = 0.6,
applying the Shannon-like version of this algorithm, we
find that l

s = (2, 13, 1, 4, 10), preliminary codeword lengths
are l

pre
s = (2, 13, 2, 4, 10), and the preliminary code is

C = (00, 0100000000000 , 10, 1100, 1101000000 ).

The italicized bits are redundant, and therefore so are
the corresponding nodes in the code tree. They are thus
removed in Step 4, yielding the code tree with lengths
(2, 2, 2, 3, 3). Tree weight is aLa(w,l) ≈ 0.316 (or La(w, l) ≈
0.851), close to the optimal weight of about 0.334 (or
La(w, l∗) ≈ 0.843). Using the Huffman-like suboptimal
algorithm yields l

h = (2, 4, 1, 3, 4), a preliminary tree with

lengths l
pre
h = (2, 4, 2, 3, 4), and an output tree with lengths

(2, 2, 2, 3, 3), identical to the above. The same w with
a = 0.7 yields an optimal tree in the Huffman-like ver-
sion.

These approaches lead to coding bounds for a ∈ (0.5, 1).
If a ≤ 0.5, an optimal nonalphabetic code is a fixed code
known as the unary code (shown, e.g., in [2]), so bounds
for such cases follow via similar means; we omit these
in the interest of space. Similarly, although the nonal-
phabetic terms here are useful in combination with other
known bounds (e.g., [1]) to further improve these alpha-
betic bounds, we omit the more complicated improved
bounds.

Theorem 1. Given a ∈ (0.5, 1) and weight function w,
let

• Lā
a(w) be (2) optimized over alphabetic codes (as in

prior section),

• Lh̃
a(w) result from the suboptimal l

h-based O(n log n)-
time algorithm,

• Ls̃
a(w) result from the suboptimal l

s-based O(n)-time
algorithm,

• Ls
a(w) be La(w, ls), Lh

a(w) be La(w, lh), and Lnon
a (w)

be La(w, lnon) (using those l values from Fig. 2).

Then

Hα(w) ≤ Lh
a(w) ≤ Lā

a(w) ≤ Lh̃
a(w)

< 1 + Lh
a(w) < 2 + Hα(w)

(4)

Hα(w) ≤ Lh
a(w) ≤ Lā

a(w) ≤ Ls̃
a(w)

< 1 + Ls
a(w) < 2 + Hα(w)

(5)

where Hα(w) is the Rényi entropy for α = (1 + log2a)−1

Hα(w) =
1

1− α
log2

n
∑

i=1

w(i)α

= (loga 2a)

(

log2

n
∑

i=1

w(i)
1

1+log2a

)

Proof. This is a corollary of Campbell’s Shannon-like
bounds for a > 0.5 [3, 4] — Hα(w) ≤ Lh

a(w) ≤ Ls
a(w) <

1+Hα(w) — along with the facts that (a) the two subopti-
mal algorithm lengths corresponding to items 1 and n are
no greater than those in l

non and (b) no other length ex-
ceeds the corresponding length in l

non by 1 or more. This

results in Lh̃
a(w) < 1 + Lh

a(w) and Ls̃
a(w) < 1 + Ls

a(w) due
to (2), and, since no alphabetic tree is better than the op-
timal alphabetic tree and no alphabetic tree is better than
the optimal Huffman-like tree, we arrive at (4) and (5).

The lower limit to Lā
a(w) is satisfied by (0.5, 0.5), while

the upper limit is approached by (ǫ, 1 − 2ǫ, ǫ), for which
Hα(w)→ 0 and Lā

a(w)→ 2.

3



Both these algorithms and the bounds due to analo-
gous inequalities apply to a > 1 and to the traditional
alphabetic problem (a→ 1, where H1 is Shannon entropy
[4]). For the traditional problem, the l

h-based suboptimal
version of the above algorithm is a strict improvement on
Yeung’s [12] due to Step 4.

Acknowledgments

The author would like to thank T. C. Hu and J. David
Morgenthaler for discussions and encouragement on this
topic.

References

[1] M. B. Baer. Rényi to Rényi — source coding under siege. In
Proc., 2006 IEEE Int. Symp. on Information Theory, pages
1258–1262, July 9–14, 2006.

[2] M. B. Baer. Optimal prefix codes for infinite alphabets with
nonlinear costs. IEEE Trans. Inf. Theory, IT-54(3):1273–1286,
Mar. 2008.

[3] L. L. Campbell. A coding problem and Rényi’s entropy. Inf.

Contr., 8(4):423–429, Aug. 1965.
[4] L. L. Campbell. Definition of entropy by means of a coding

problem. Z. Wahrscheinlichkeitstheorie und verwandte Gebiete,
6:113–118, 1966.

[5] E. N. Gilbert and E. F. Moore. Variable-length binary encod-
ings. Bell Syst. Tech. J., 38:933–967, July 1959.

[6] T. C. Hu, D. J. Kleitman, and J. K. Tamaki. Binary trees opti-
mum under various criteria. SIAM J. Appl. Math., 37(2):246–
256, Apr. 1979.

[7] D. A. Huffman. A method for the construction of minimum-
redundancy codes. Proc. IRE, 40(9):1098–1101, Sept. 1952.

[8] P. A. Humblet. Generalization of Huffman coding to minimize
the probability of buffer overflow. IEEE Trans. Inf. Theory,
IT-27(2):230–232, Mar. 1981.

[9] D. E. Knuth. Optimum binary search trees. Acta Informatica,
1:14–25, 1971.

[10] N. Nakatsu. Bounds on the redundancy of binary alphabetical
codes. IEEE Trans. Inf. Theory, IT-37(4):1225–1229, July 1991.

[11] D. S. Parker, Jr. Conditions for optimality of the Huffman
algorithm. SIAM J. Comput., 9(3):470–489, Aug. 1980.

[12] R. W. Yeung. Alphabetic codes revisited. IEEE Trans. Inf.

Theory, IT-37(3):564–572, May 1991.

4


