
Another Personal View of Generalized Huffman

Coding

Michael B. Baer

November 30, 2013

Abstract

This note is a high-level introduction to my research, written for those

who want an overview of this body of work, rather than just an abstract

of one particular paper. As such, most mathematical and algorithmic

details are omitted. The first part, intended for a general audience, ex-

plains the ideas behind lossless coding, specifically Huffman coding and

variants thereof. The second part, intended for a more technical audience,

summarizes the results of my dissertation, papers, correspondences, and

extended abstracts. This note was written in September 2008 and revised

in November 2013, its title inspired by that of Mordecai Golin’s September

2001 talk, “A Personal View of Generalized Huffman Encoding.”

1 Introduction to Data Compression

1.1 Concept

The concept of data is now so ubiquitous that most computer users know what
a gigabyte is, if not precisely, then approximately. (A gigabyte is usually defined
as eight billion bits, where a bit is a binary digit, that is, a value that can take
on either a “0” or a “1”. Data is stored both in computer memory and on hard
drives in such a binary fashion.) Upon using too many gigabytes, a user will
buy a new hard drive, or, perhaps, a new computer. Similarly, upon using too
many gigabytes, a company will often have to buy a new and expensive piece
of hardware for its computing infrastructure. Upon attempting to transmit too
many gigabytes in a short period of time across a communication line, such as
a fiber-optic line or a cellular network, communication systems often approach
capacity and fail in a variety of ways: by refusing new data, by delaying all
data, or by having complete system failure.

Clearly, it is a matter of some importance to household and industry just
how these gigabytes are used. Like any other commodity — dollars, oil, time
— they can be used wisely or wasted. For some means of communications, like
mobile phones, even a millionth of a gigabyte (that is, a kilobyte) here and there
can make a fair bit of difference. And, of course, a byte here and there every few

1

bytes makes a large difference overall. Wherever use of storage or bandwidth is
restricted — as it is in most applications — the discipline of data compression
enters into play.

The results of data compression are seen in action by millions daily. When
copying a music CD at home, we observe that no more than about 80 minutes
of music can be stored on the recordable CD. Yet when we burn the same
recordable CD with data files obtained from such online sources as iTunes, it
holds about 800 minutes. The compression ratio between raw production video
storage space and DVD storage space is even more dramatic; both users and
engineers often think of storage in terms of space, so it is natural to use this
analogy here.

Part of the trick is getting rid of some of the data we don’t really need. If it is
acceptable to render part of a picture slightly brighter or part of a song slightly
louder, we can save some of the space that stores precisely how bright or loud
the reproduced media should be. Because some data is lost, this is called lossy

compression. (This must be distinguished from “lousy compression,” which,
naturally, is what happens if too much data, too little data, or the wrong data
is disposed of.)

Still, dropping some data here or there, however wisely, is not enough to
achieve the levels of compression we see in practice, and such loss is unacceptable
in transmitting, say, a program or a book. If “It was the best of times” were
represented as “It was the vest of dimes” in the compressed file, this would be
a problem, unlike a slight change in image brightness. Lossless compression,
also known as entropy coding, is also important, and it is what the bulk of my
research has concerned.

Lossless compression may seem like a bit of magic at first. How is it that
every time I take a text document and form a ZIP file — ZIP files use lossless
compression — I get back a smaller file from which I can recover the larger one?
The answer is that not all data are equally likely. For example, let’s say that
I take a novel and replace every instance of “and” with “&&.” The novel will
clearly be shorter, “and” being a common word, and since no novel I’m aware
of has “&&” in it, turning around and replacing “&&” with “and” gets back
the original novel.

Clearly doing this for “and” is far more effective than, say, doing it for a less
common word like “fan.” Doing it for a more common word, like “the,” would
be even more effective. The effectiveness of a lossless compress system is thus
dependent on a model of the probabilities of the data to be compressed.

1.2 Example

A simple example might, instead of compressing words, compress weather fore-
casts. Contrary to popular opinion, for example, Los Angeles is not always
sunny, but let us say that “sunny” is a good bet 60% of the time. Another 20%
will be “partly cloudy,” another 10% foggy, with the remaining being 3% mostly
cloudy (overcast), 3% showers, 2% rain, 1% thunderstorms, and 1% snow. (In
case it’s not obvious, these aren’t accurate numbers, at least not for the snow.)

2

sunny

partly cloudy

fog

not sunny?

not partly
cloudy?

not foggy?

significant
precipitation?

showers? not just rain?

overcast showers rain snow?

snowthunderstorms

1 (yes)

1 (yes)

1 (yes)

1 (yes)

1 (yes)1 (yes)

1 (yes)

0 (no)

0 (no)

0 (no)

0 (no)

0 (no) 0 (no)

0 (no)

Figure 1: Flowchart / coding tree for compression of weather forecast data

Since there are eight possible forecasts, the most straightforward approach
to storing or transmitting this would be to use numbers one through eight, or
(all possible combinations of) three bits (“0”s and/or “1”s). However, it would
be more efficient to send one bit corresponding to whether (“0”) or not (“1”) it
is sunny; another, if necessary, for whether or not it is partly cloudy; another,
if still necessary, for whether or not it is foggy; a bit distinguishing overcast
or showers from worse; and another bit (for more likely events) or two (for
less likely events) to distinguish the other possibilities from one another. Such
a mapping from weather events to bits can be expressed by the flowchart in
Figure 1 or, equivalently, described as follows:

event index i probability p(i) codeword c(i) (bit sequence)

sunny 1 0.6 0
partly cloudy 2 0.2 1 · 0
fog 3 0.1 1 · 1 · 0
overcast 4 0.03 1 · 1 · 1 · 0 · 0
showers 5 0.03 1 · 1 · 1 · 0 · 1
rain 6 0.02 1 · 1 · 1 · 1 · 0
thunderstorms 7 0.01 1 · 1 · 1 · 1 · 1 · 0
snow 8 0.01 1 · 1 · 1 · 1 · 1 · 1

Figure 1 can be thought of as a binary tree, which is a convenient way of
expressing this mapping. Any general mapping from one notation to another is

3

called a code and each individual event mapping a codeword. Not all possible
codes are feasible, however; if we were to replace the codeword for partly cloudy
with a simple “1” then the bit sequence “1·1·0” could represent either two partly
cloudy days followed by a sunny day or one day of fog. To avoid such ambiguity,
a code should be uniquely decodable, which means just what it sounds like it
means. The type of uniquely decodable code most commonly used in practice
is one in which, looking at the sequence of bits one-by-one, a decoder can tell
where a codeword ends when it ends (rather than having to wait for bits of future
codewords to determine this). Such an instantaneous code occurs only when no
codeword is fully contained within an incomplete portion of the beginning, or
prefix, of another codeword. For this reason these codes are also called prefix-

free codes (or sometimes, confusingly, prefix codes). This property is satisfied
by the above code. In fact, most lossless codes used in practice are prefix codes,
since there is no advantage to using other types of uniquely decodable codes,
and prefix codes are the simplest type of code.

1.3 Optimality

Although simple, this coding procedure is still more complicated than assigning
three bits to each of the eight codewords. What is superior about the above
code? How do we measure the “goodness” of such a code? The most common
way is to find a code with low expected value.

Expected value is the average length of a codeword, where the average is
weighted by the probabilities of the events in question. Consider, for example,
a coin flip, which has only two equally probable results. Clearly we should
use “0” for heads and “1” for tails. Let us say, however, that we instead use
a less efficient code which has “0 · 1” for heads and “1” for tails. (This is
actually less silly than it sounds; such “1”-ended codes are an actual area of
study.) If we flip the coin three times, we’ll have anywhere from 3 to 6 bits
representing the results. In the most likely instances, we’ll have 4 or 5 bits, and
the average number of bits per symbol will be about 1.33 or 1.67. There is some
sense, however, in which we should determine an average according to not any
particular set of outcomes, but according to a weighting over the likelihood of
the events. Since we have half a chance of 1 bits and half a chance of 2 bits this
“average” would be 1.5 bits, 1.5 being equal to (0.5)(1)+ (0.5)(2). Such a value
is called the expected value.

We use p(1) to represent the probability of the event represented by index 1
(and p(2) for 2, etc.) and l(1) to represent the number of bits in the corre-
sponding codeword c(1) (and l(2) for c(2), etc.). In the weather case, then, the
expected length is

p(1)l(1) + p(2)l(2) + p(2)l(2) + p(3)l(3) + p(4)l(4)+
p(5)l(5) + p(6)l(6) + p(7)l(7) + p(8)l(8).

(1)

This sum of products is 1.82 for the variable-length code whereas if l(i) = 3 for
all of the 8 values of i, then the expected value for length would be 3. Judged
on this basis, the more complicated code is superior.

4

More generally, if n represents the number of events to be coded then the
expected value is

∑

i

p(i)l(i) or p(1)l(1) + p(2)l(2) +

Here
∑

i represents the sum of the terms for all possible i (in this case, from 1
to n). A more informative but more complicated way of expressing this is

n
∑

i=1

p(i)l(i) or p(1)l(1) + p(2)l(2) + . . .+ p(n)l(n)

which makes the starting (index 1) and ending (index n) points explicit. For
example, if n = 8, this expression has the same meaning as the expected value
summation on the line labeled with (1). This weighted average is often denoted
with the less bulky Ep[l(i)].

The goal of compression is to minimize the total number of bits expended,
so we might reasonably ask what relationship this has with expected value. The
short answer to this is that it is a close enough relationship that we generally
want to find a code that minimizes expected value in order to minimize bits
expended for most event combinations. Unfortunately, the exact relationship is
rather technical, so you might want to skip to the paragraph after the next one
if you get lost in the mathematics. Consider again a weather report, where the
weather on day 1, with the probabilities above, is represented by X1, day 2 by
X2, etc. The total number of bits expended for encoding m days of weather into
bits is

∑m

j=1 l(Xj) (i.e., l(X1)+l(X2)+. . .+l(Xm)). The average number of bits

per event is thus 1
m

∑m

j=1 l(Xj) (i.e., (l(X1) + l(X2) + . . . + l(Xm))/m), which
can be denoted A[l(Xm

1)] (although this terminology for a running average is
not a widespread one like “E” is for expected value). For example, if lengths are
l(X1) = 1, l(X2) = 4, l(X3) = 4, l(X4) = 3, and l(X5) = 4, then A[l(X1

1)] = 1,
A[l(X2

1)] = 2.5, A[l(X3
1)] = 3, A[l(X4

1)] = 3, and A[l(X5
1)] = 3.2. Such a

sequence of As may or may not converge, that is, there may or may not be
a value a for which limm→∞ A[l(Xm

1)] = a, where this limit (lim) expression
implies that, informally, A[l(Xm

1)] gets closer and closer to a as m gets larger
and larger.

The probabilistic relationship between the limit (if any) of this average and
the expected value is given by the strong law of large numbers :

P

(

lim
m→∞

A[l(Xm
1)] = Ep[l(i)]

)

= 1

where the P denotes probability, specifically the probability that the limit of the
average length equals the expected length. What this means, in simple English,
is as follows: We would like it if an arbitrary data sequence has the property
that the average length of an event in the sequence will get as close as we like
to the expected length; it is just a matter of how far into the sequence we have
to go. The strong law of large numbers says that the probability our sequence
will be such a well-behaved sequence is equal to one; that is, it is a certainty.

5

This guarantee may not be much of a guarantee if the required “close
enough” point in the actual sequence is past the end of any practical data
we’ll ever see. Informally, we might speak of “having enough data for the law of
large numbers to kick in.” This is determined, to a first order approximation, by
the central limit theorem, but it suffices to know that, in practical applications
such as media files and office documents, it is safe to assume that the law of
large numbers has “kicked in.” It is so often assumed that expected length and
average length are “close enough,” that, confusingly, both are sometimes called
“mean length,” a term that is wise to avoid for the sake of semantics.

The code we used for weather was produced via a method that always finds
the most efficient way of representing items given their probabilities, i.e., the
one having the lowest expected length. Any code produced via this method is
called a “Huffman code” after the person who discovered how to generate such
codes for any given probability distribution over a finite number of items.

This does not necessarily mean that the best compression is achieved by
using this code. As presented here, this method ignores statistical dependency
among events. For example, if yesterday was rainy, the probability that today
is sunny is less than it might otherwise be. These dependencies can easily be
accounted for, but accounting for them does make more work for the computer
(and for its programmer). Also, we’ve assumed that our probabilities are not
only unchanging but also known and accurate, which is often not the case in
practice. Finally, if we take the combined probability of two days’ of weather,
rather than just one, using the probabilities of the two-day possibilities to come
up with a new Huffman code corresponding to two days at a time, that code
will be a more efficient representation than taking each separately, resulting, in
this example, in 1.8187 expected bits rather than 1.82 bits. Information theory
states that, with further grouping — say of three, four, or more symbols —
compression systems can get as close as possible to the fundamental coding limit,
known as entropy, which, in this case, is about 1.7880456 . . . bits. A method
known as arithmetic coding does this grouping implicitly, however, and is thus
often a less complex method of approaching entropy. Still, many compression
systems choose not to use arithmetic coding, as it is more complex than most
implementations of Huffman coding and thus runs more slowly and/or requires
better computational devices. Other drawbacks include poor performance with
certain inaccurate probability models, difficulty in programming and debugging,
reduced error recovery, and patent restrictions for certain implementations. In
such systems, these drawbacks are not worth putting up with for improvements
in compression, which are often small. (At this point, most relevant patents
on arithmetic coding have expired. However, their existence discouraged use
in software, standards, and other technology still in use today. In addition, it
is often difficult to determine which patents cover which forms of arithmetic
coding, and thus often easier to just use the unpatented Huffman method.)

6

1.4 Variants of the Problem

In other cases, though, alternatives to Huffman coding are used. In fact, even
when a compression method such as JPEG or MPEG uses “Huffman codes,”
these codes are not necessarily generated using Huffman’s technique, but are
rather convenient approximations of true Huffman codes. (Technically, they
are fixed-to-variable-length codes, not Huffman codes.) Nevertheless, Huffman
codes are often used in practice and are useful not only in the practice of com-
pression, but in its theory as well.

It is, however, worth looking at why certain applications do not use actual
Huffman codes when assigning bit sequences to events. Before describing vari-
ants of Huffman coding, I would like to point out that hundreds of papers on
variants of Huffman coding are discussed in a survey by Julia Abrahams enti-
tled, “Code and Parse Trees for Lossless Source Encoding,” originally published
in the Proceedings of the Compression and Complexity of Sequences in 1997 and
updated for Communications in Information and Systems in 2001. (It was also
excerpted as “Huffman Code Trees and Variants” in an online preprint.) This
survey is comprehensive, whereas the paper you are now reading focuses on my
areas of interest, which are described in the following.

Many times, an optimal code has events that are so unlikely that the corre-
sponding Huffman codeword lengths are inconveniently large, making compu-
tation difficult due to the use of especially long codewords for such events. It is
often preferable to have a suboptimal code that is length-limited, that is, has a
maximum length. In fact, standards such as MPEG not only use a maximum
length for even the most unlikely events, but they also limit the number of
codeword lengths they use within an allowed range of codeword lengths. This
is also for computational reasons, although, curiously, such problems have not
previously been looked at in depth. Other codes cannot have a maximum length
because they represent data such as integers, which are infinite in number. Al-
though the Huffman algorithm cannot find an optimal code with infinite input,
optimal and near-optimal codes exist for such problems.

As previously stated, the objective of minimizing expected length, with or
without restrictions, rests on the assumption that the quantity of data is so
great that the law of large numbers guarantees that average length will be close
to expected length, and thus that is the value that is best to minimize. When
dealing with fiber optic cables and gigabit Ethernet, that is a safe assumption.
However, in other coding situations, resources may be low enough that this
assumption no longer holds.

A low bit rate might result in needing a buffer of some sort, in which data yet
to be transmitted must temporarily reside. If such a buffer is small enough, data
might be lost and we would want to minimize the probability of this occurring.
If the transmission rate is slow enough, second order effects might mean that
a long codeword for an unlikely event unduly impacts the transmission of all
codewords. (This phenomenon is called the “slow truck effect,” since the long
codeword is like a slow truck on a highway delaying vehicles [codeword data]
that would ordinarily advance more quickly.) In such cases, longer codewords

7

should be shorter than they would otherwise be (meaning that, as a trade-off,
some shorter codewords would have to be longer). If a connection is unreliable,
on the other hand, we may want the most likely events which already have short
codewords to have even shorter codewords than usual, so that a message has a
higher chance of being received before the signal is lost. We could also imagine
a measurement for success in which some combination of these factors is used.
All these problems have different approaches and solutions.

Up until this point, the discussion has been limited to problems where the
possible events coded have no particular order. This, however, is not always
the case. A Huffman code can be seen as narrowing of a number of possibili-
ties by separating them, at each step, with each bit, into two smaller subsets,
continuing this subdivision until only one item remains within the realm of pos-
sibility. Often, if items are ordered, we won’t be able to arbitrarily subdivide,
but rather our subdivisions will be restricted to less-than/greater-than-or-equal-
to divisions. This so-called alphabetic restriction, much like looking for a word
through a dictionary, means that the solution may be less efficient but more
practical than that obtained by ignoring the restriction.

Finally, there are some applications for which the goal is not to encode data
into “0”s and “1”s. For many storage and communications methods, from flash
memory to wireless, there are far more values to choose from to represent data.
Therefore, nonbinary coding problems (i.e., those with more than two choices
per output symbol) are often also useful to solve, though such problems are
generally in the minority of cases considered and are often (but not always)
straightforward extensions of binary cases.

2 Summary of papers

My work has concerned various instances and combinations of these situations,
finding algorithms and properties relevant to the instances under consideration.
My descriptions of the papers and other manuscripts will be partly chronological
and partly organized by subject according to the order of exposition given in
my dissertation; I will provide their titles in boldface so that this section can
be easily skimmed. All papers that I have published — as well as preprints for
papers yet to complete a peer review process — can be found on my web site,
http://www.mbbaer.com/. A chart summarizing the nature of these papers is
at Table 1. For papers written by others, I will use a mangled version of MLA
style (MLA Style Manual and Guide to Scholarly Publishing, 1998), sparely
using in-place references. More complete reference lists can be found within my
papers. Because I have the benefit of hindsight, some of the interpretations and
examples given here are not necessarily in the published papers; all fundamental
results, however, are.

A quick note before beginning: As mentioned before, there are methods that
are superior to the Huffman (prefix) coding framework in many settings. This is
so much the case that two decades ago there was a publication whose title asked,
“Is Huffman Coding Dead?” (A Bookstein and ST Klein, “Is Huffman Coding

8

Dead?” Computing, 1993.) This paper weighed the benefits and drawbacks
of Huffman coding against other methods of compression, finding that there
were still several reasons to prefer Huffman coding. As recently as 2007, a
publication looked at which compression method was best for the ARM7TDMI
processor, that used in the iPod (classic) and in most Nokia mobile phones,
in the end favoring Huffman coding (Garofalo, Napoli, Petra, Strollo, “Code
Compression for ARM7 Embedded Systems,” ECCTD 2007). Finally, even if
Huffman coding were strictly inferior for every application, many technologies
in wide use today — such as (baseline) JPEG for digital cameras — are stuck
using prefix coding (with “Huffman tables” for decoding) for the foreseeable
future; no other technology has challenged JPEG as a de facto standard for
digital photography.

2.1 Generalized Huffman Coding

My dissertation, Coding for General Penalties, contains a number of re-
sults, some of them published, others not novel enough to merit publication on
their own, but nonetheless worthwhile. The second chapter of the dissertation
concerns prefix coding for exponential objectives — those of the form

Ep[a
l(i)] or

∑

i

p(i)al(i) or p(1)al(1) + p(2)al(2) + . . .

which had been previously studied, both in theory and application, for arbitrary
a > 1. For a between 0 and 1, this objective is one to maximize, not minimize,
but still has similar properties and solutions. (The objective can be rephrased
as loga Ep[a

l(i)] to be a minimization for both subproblems.) Properties of tradi-
tional Huffman codes are extended to these exponential expectation objectives,
including a property of the corresponding coding tree (known as the sibling
property) and one regarding how to break ties among optimal codes for various
tie-breaking objectives. In addition, continuity properties of the objective for
various values of a — where a = 1 is used to denote Huffman coding — are
examined.

Much of the material from Chapter 3 forms my first journal publication, “A
General Framework for Codes Involving Redundancy Minimization.”
This correspondence serves to unify a number of problems that Huffman-like
methods solve, including one which had not previously been solved in linear
time or using a Huffman-like method. The problem of finding the minimum
maximum pointwise redundancy code (which is defined below) was previously
solved using a variant of what is known as Shannon coding. Shannon coding
was one of the first prefix coding methodologies developed, preceding the discov-
ery of the more well-known Huffman coding algorithm. It uses what is known
as self-information, the codeword length that would be algebraically calculated
for an event if codeword length lengths were not restricted to whole numbers,
equal to − log2 p(i) for event i. This is rounded up to determine a codeword
exceeding self-information by less than one bit. It is easy to construct a code
with the desired codeword lengths. Being mathematical in nature, this coding

9

method is very different than the more algorithmic Huffman coding, although
both methods guarantee codes within one bit of entropy. (This one-bit prop-
erty is known as a redundancy bound.) The difference between average codeword
length and entropy is known as expected redundancy (or sometimes mean re-
dundancy or just redundancy). Because expectation is a linear operation, the
expected redundancy is the expected value of the pointwise redundancy, the dif-
ference between codeword length and self-information (that is, l(i) + log2 p(i)).
In any code for a finite number of events, there is a maximum pointwise re-
dundancy, as one or more events will have a greater pointwise redundancy than
others.

While the Huffman code, being optimal, never has an expected codeword
length greater than that of the Shannon code, individual Shannon codeword
lengths can be shorter than their counterparts in a Huffman code, which does
not have the Shannon code’s per-event (pointwise) guarantee about lengths and
self-information. The earliest proposed method used to find a code that min-
imizes maximum pointwise redundancy used a generalized Shannon method,
and the resulting code can have no codeword that is longer than its Shannon
coding counterpart, since any such code would have longer maximum point-
wise redundancy than the Shannon code. I proposed a Huffman-like method
for minimizing maximum pointwise redundancy, which, in turn, can find a code
with no codeword length longer than its generalized Shannon code counterpart.
This might be a different code; multiple codes can have identical maximum
pointwise redundancy. Codes obtained via this Huffman-like method are thus
improvements on generalized Shannon codes, minimizing other desirable factors
among codes optimal in minimizing maximum pointwise redundancy. Thus this
modified Huffman code, unlike the Huffman codes used in previous literature,
is a strict improvement on Shannon coding. In fact, this method and the tradi-
tional Huffman method are just opposite ends of a continuum of coding methods
related to a modified exponential penalty, one previously known but not previ-
ously related to Shannon coding, in either its original or generalized form. This
ties together not only Huffman and Shannon coding, but also provides a greater
two-dimensional framework with limited symmetry encompassing families of
problems previously looked upon distinctly.

These Huffman-like methods cannot be directly applied to probability mass
functions with a (countably) infinite number of events, but, as with traditional
Huffman coding, the properties inherent in the methods can be used to find
optimal codes for certain classes of infinite-event probability mass functions.
Methods of doing this are explored in my 2008 journal publication, “Optimal
Prefix Codes for Infinite Alphabets with Nonlinear Costs.” This pa-
per — expanding on my conference presentation, “Infinite-Alphabet Prefix
Codes Optimal for β-Exponential Penalties” — covers minimization of
both the exponential and maximum pointwise redundancy utilities, for both ge-
ometric probability distributions (those having p(i) proportional to θi for some θ
on all positive numbers) and rapidly declining distributions such as the Poisson
distribution. The paper further considers properties and applications of these
codes, one of which — the “siege problem,” which relates to the probability of

10

successful communications under adverse conditions — was also introduced as
the first portion of “Rényi to Rényi — Source Coding under Siege.” My
initial queries into the topic of coding for infinite-event alphabets are contained
in Chapter 5 of my dissertation. This chapter also mentions two-dimensional
geometric distributions, in which geometrically distributed events are paired
and the traditional objective of expected codeword length is considered. As
explained in Subsection 1.1, pairing often decreases expected codeword length.
In the section of the dissertation discussing this, I describe the code that is, in
some sense, “approached” by the codes optimal for the two-dimensional distri-
bution family with increasing likelihood of the most likely event. More definitive
results are contained in a recent paper (F Bassino, J Clément, G Seroussi, A
Viola, “Optimal Prefix Codes for Pairs of Geometrically Distributed Random
Variables”, IEEE Transactions on Information Theory, 2013), including a for-
mal proof of this observation.

The aforementioned “Rényi to Rényi — Source Coding under Siege”
considers aspects of exponential objectives for a finite number of items. I present
optimization and approximation algorithms for the alphabetic version of this
problem, which, perhaps due to its lack of amenability to common fast algo-
rithms, was not previously considered for a < 1; these by themselves form
the brief “Alphabetic Coding with Exponential Costs,” a short version
of my (unreleased) “Alphabetic Coding under Siege” (available upon re-
quest). I also present redundancy bounds that improve upon the trivial afore-
mentioned 1-bit bounds; these are tied to the probability of the most likely code-
word. I present corresponding results for minimum maximum pointwise redun-
dancy coding in the extended abstract “Tight Bounds on Minimum Max-
imum Pointwise Redundancy,” and the redundancy bound results of the
aforementioned papers are combined and extended in my 2011 journal publica-
tion, “Redundancy-Related Bounds on Generalized Huffman Codes.”
These extensions apply to exponential objectives; further improvements to these
bounds on exponential objectives are presented in “On the Redundancy of
Huffman Codes with Exponential Objectives.”

2.2 Quasiarithmetic Objectives

My second journal publication, “Source Coding for Quasiarithmetic Penal-
ties,” contains matter present in both Chapter 4 of my dissertation and my first
conference publication in this field, “Source Coding for General Penalties.”
This work encompasses a broader array of coding problems, although, like the
exponential objective, the broader quasiarithmetic family considered here was
first introduced without optimal solution by Campbell (LL Campbell, “A Cod-
ing Problem and Rényi’s Entropy,” Information and Control, 1965). While the
exponential objectives are of the form

loga Ep[a
l(i)]

or
Ep[a

l(i)]

11

quasiarithmetic objectives are those of the form

ϕ−1
Ep[ϕ(l(i))]

or
Ep[ϕ(l(i))] (2)

for monotonic functions ϕ. This is a generalization of not only the exponen-
tial objectives, but also the traditional expected length objective, and, if ϕ is
considered infinity for forbidden lengths, the length-limited objective (which
is that of expectation over allowed lengths). It is also seen in minimum de-

lay coding, in which end-to-end latency (delay) is minimized rather than code-
word length (throughput) assuming an M/G/1 queueing model (LL Larmore,
“Minimum Delay Coding,” SICOMP, 1989). “Source Coding” presents an ap-
proach for optimizing coding over any finite probability mass function for any
quasiarithmetic objective with convex increasing ϕ, which, in particular, results
in an improvement in the speed of solving Larmore’s minimum delay coding
problems. Complementary to the algorithmic contribution are those involving
properties relating to these objectives, including redundancy bounds (using a
form of generalized entropy) and the existence of optimal codes (which is not a
trivial matter for infinite alphabets).

One statistic of codes — which I did not use as the basis of an objective
in this paper, but which nonetheless makes for an interesting digression — is
that of data expansion (JF Cheng, S Dolinar, M Effros, R McEliece, “Data
expansion with Huffman codes,” ISIT, 1995). Data expansion occurs where
statistics are perfectly known and uncompressed data are replaced, event-by-
event, by their compressed forms. Uncompressed data take up m bits per event,
where m = ⌈log2 n⌉, n being the number of events considered and ⌈x⌉ denoting
the smallest integer not less than x. These data are replaced by data taking
up l(i) bits per event i. Thus, if all events where l(i) exceeds m occur prior to
the other events, the file temporarily expands by up to Ep[(l(i)−m)+] bits per
symbol, where x+ denotes the maximum of x and 0. Clearly this is a penalty of
the form (2), and its minimization is achieved by a simple fixed-length code. It
is not a quantity one would usually want to minimize alone, but an application
might trade off this measure with the more traditional measure of expected
length, seeking to minimize

Ep

[

l(i) + (l(i)−m)+λ
]

for some fixed λ > 0. Such a formulation linearly trades off the two quantities;
Huffman coding corresponds to λ = 0 and fixed-length coding to λ = ∞. This
can be used to minimize one quantity with respect to a constraint on the other
using a binary search over values of λ. (Although it might first appear other-
wise, such an approach is not suited to Lagrangian methods for finding optimal
solutions, since the problem is an integer problem, not a real-valued problem.)
One could also minimize a variety of nonlinear hybrid coding objectives using
convex hull techniques discussed at the end of Chapter 4 of my dissertation.

12

2.3 Linear Objectives

Although the aforementioned objectives are of some interest, in the vast ma-
jority of situations, bit rate is high enough that coding problems should solve
the linear objective of expected throughput. This is usually equal to expected
codeword length, but there are situations in which that might not be so. For
example, one of the oldest well-known codes, Morse code, uses output symbols
of different lengths; a “dot” is shorter than a “dash.” Prefix coding with dif-
ferent symbol costs is thus an old problem, one for which many variants and
solutions exist. The unrestricted problem actually has no known efficient solu-
tion, while adding an alphabetic restriction on the input and output results in
a problem that is easily solved via dynamic programming. The alphabetically
restricted problem has an analogue in binary decision trees, in which one wishes
to distinguish among several outcome events based on less-than/greater-than-
or-equal-to queries, and duration of the query is dependent upon the outcome.
If this duration asymmetry is fixed — one duration of time for the less-than
outcome and another for the greater-than-or-equal-to outcome — this is one of
the already-studied problems. However, if the problem-solver can control the
asymmetry of the duration — whether or not the less-than outcome takes more
time than the greater-than-or-equal-to outcome — then this results in a prob-
lem that is examined in “On Conditional Branches in Optimal Decision
Trees.” The properties and solution must be modified, but are similar in flavor
to those for the fixed-asymmetry case. Practically speaking, this problem arises
in programming such decision trees into software, in which such asymmetries
are due to branch prediction. In simpler processors, such as those for all but the
most advanced mobile phones, branch prediction follows a simple model. The
model is more complex for personal computers and advanced mobile devices,
and the analysis must be altered accordingly. This is more fully considered,
along with other variants of the problem, in the full version of the paper, “On
Conditional Branches in Optimal Search Trees.”

One sample application of such decision trees is, coincidentally, determining
the codeword length of a Huffman code in the process of being decoded. The ef-
ficiency of this step is critical in determining the speed of decompression, yet in
the past it has been accomplished without considering the aforementioned sym-
metry in branch outcome (A Moffat and A Turpin, “On the Implementation of
Minimum Redundancy Prefix Codes,” IEEE Transactions on Communications,
1997).

As speed of determining codeword length of the code being used is critical in
the speed of overall decompression, Moffat and Turpin indicate that restricting
the code to those with no codewords longer than a maximum length results in
faster decompression. In fact, restricting the length of the minimum codeword
length, as well as the maximum, helps in this. This bounded length problem
and related problems are considered in “D-ary Bounded-Length Huffman
Coding.” The full version of this paper is entitled, “Twenty (or so) Ques-
tions: D-ary Length-Bounded Prefix Coding,” inspired by the guessing
game device, 20Q, which asks between 20 and 25 questions in order to deter-

13

mine the item being guessed (which, in this case, is the outcome “event”). The
answers to 20Q’s questions are not restricted to “yes” and “no,” and I also con-
sider nonbinary variants of this problem; previous efficient methods of finding
codes with length restrictions only apply directly to the binary case.

The aforementioned 1997 survey by Abrahams (as well as the updated 2001
version) mentions the problem of trying to find a code with restricted fringe, or
difference between the minimum and maximum codeword length. Clearly this
problem is related to the bounded-length problem, and a simple reduction to
the bounded-length problem results in an efficient solution to the fringe-limited
problem, unlike the solution suggested in the survey, which is not polynomial
time (and thus not practical for any but the smallest of problems and those
for which fringe would be naturally limited due to the nature of the input
probability mass function).

The restriction of lengths to values in an interval is a special case of what
I’ve heard of referred to as “Length-Reserved Prefix Coding,” the title of
my paper about the same. This problem restricts codeword lengths to a input
set of codeword lengths. This set may be infinite, although I show in the paper
that any infinite set can easily be made into a finite set with the same solution.
(This problem was referred to as the “length-reserved” problem by Zhen Zhang,
the idea being that forbidden lengths that were deemed “reserved.”) I addressed
this problem using dynamic programming in a manner that is formulated quite
differently from that used for the aforementioned branch problem, one which
more closely, though not completely, resembles that used for “1”-ended codes
(SL Chan and MJ Golin, “A Dynamic Programming Algorithm for Constructing
Optimal “1”-Ended Binary Prefix-Free Codes,” IEEE Transactions on Informa-

tion Theory, 2000). Golin, in turn, sped up this and related algorithms by an
order of magnitude (M Golin, X Xu, J Yu, “A Generic Top-Down Dynamic-
Programming Approach to Prefix-Free Coding,” SODA, 2009).

This dynamic programming method can be adapted to solve other problems.
For example, in Subsection 2.2, I noted that I’d found a way to find an optimal
solution for a quasiarithmetic utility, one of the form (2), provided that ϕ was
convex. However, certain previously unsolved variants of the siege problem are
not convex. The dynamic programming method here can be easily adapted to
solving such problems with nonconvex, monotonic ϕ.

This method also solves problems involving a code restricted not to hav-
ing only certain fixed codeword lengths, but to having only a certain number
of user-determined codeword lengths — e.g., four different codeword lengths,
such as 4, 5, 8, and 9, or 3, 5, 7, and 10. This simple extension is practical
becauce there are, relatively speaking, only a small number of candidate sets of
codeword lengths. Although the method for finding such a code is slower than
conventional Huffman coding, the resulting code results in less computation for

decompression than conventional Huffman coding. Just as Huffman coding is
often chosen because it is faster than the oft-better arithmetic coding but slower
than no compression, this method can be chosen for cases in which even a con-
ventional Huffman code is too slow to use but some compression is desired. I
also presented fast suboptimal methods, as well as fast methods to find optimal

14

codes if only two or three codeword lengths are allowed; many of these can be
solved even more quickly than Huffman coding. The problem of compression
performance with two codeword lengths was recently considered on an asymp-
totic basis (E Figueroa and C Houdré, “On the Asymptotic Redundancy of
Lossless Block Coding with Two Codeword Lengths,” IEEE Transactions on

Information Theory, 2005), though optimizing the problem was not previously
considered to my knowledge.

So far I have been discussing problems for which an optimal solution is
known. However, several infinite-event cases do not have a known solution.
These include power laws, in which probability is inversely related to a power
of the item index, i.e., p(i) ∼ ci−α for constants c > 0 and α > 1, where p(i)
is the probability of symbol i, and f(i) ∼ g(i) implies that the ratio of the
two functions goes to 1 with increasing i. Such power laws are well known to
model several natural processes (M Mitzenmacher, “A Brief History of Genera-
tive Models for Power Law and Lognormal Distributions,” Internet Mathemat-

ics, 2004; MEJ Newman, “Power Laws, Pareto Distributions and Zipf’s Law,”
Contemporary Physics, 2005; NN Taleb, The Black Swan: The Impact of the

Highly Improbable, 2007). (As a side note, the last of these works was consid-
ered prescient in criticizing the flawed mathematical models which justified the
financial decisions leading to the recent financial crisis. These models greatly
underestimated the probability of large deviations; models involving power laws
generally wouldn’t.) If no optimal code is known, we must settle for a nearly
optimal code. In “Prefix Codes for Power Laws with Countable Sup-
port,” the full version of “Prefix Codes for Power Laws,” I propose a new
family of prefix codes and compare their performance with that of previously
proposed codes over several common probability mass functions. I find that
the new codes are an improvement on the prior codes in most of the consid-
ered cases, including one relating to the representation of rational numbers in
computer memory.

An area related to prefix coding is Tunstall coding : Although not as well
known as Huffman’s optimal fixed-to-variable-length coding method, the opti-
mal variable-to-fixed-length coding technique proposed by Tunstall offers an al-
ternative method of lossless data compression. Whereas fixed-to-variable length
coding represents one event or symbol (or a fixed number of events or symbols)
by a variable-length code, variable-to-fixed-length coding represents a variable
number of events by a fixed-length code. Among other advantages, this means
that a single error in an output symbol will not be propagated beyond the
variable-length input group. Constructing a Tunstall code can be realized quite
efficiently with Bernoulli input, that is, fixed-probability, independent zeros and
ones — two possible event outcomes per input symbol (J Kieffer, “Fast Gen-
eration of Tunstall Codes,” ISIT, 2007; YA Reznik, AV Anisimov, “Enumer-
ative Encoding/Decoding of Variable-to-Fixed-Length Codes for Memoryless
Sources,” Ninth International Symposium on Communication Theory
and Applications, 2007). However, prior to my work, it seems that no one
examined how to more efficiently construct Tunstall codes for other types of
data, which constitute the vast majority of data to be coded. This is what

15

P
ap

er

In
fi
n
it
e
in
p
u
t
al
p
h
ab

et

F
in
it
e
in
p
u
t
al
p
h
ab

et

L
in
ea
r
ob

je
ct
iv
es

E
x
p
on

en
ti
al

ob
je
ct
iv
es

Q
u
as
ia
ri
th
m
et
ic

ob
je
ct
iv
es

A
n
al
y
ti
c

A
lg
or
it
h
m
ic

N
on

al
p
h
ab

et
ic
al

ou
tp
u
t

A
lp
h
ab

et
ic
al

ou
tp
u
t

J
ou

rn
al

“A General Framework...” • • • • •
“Source Coding for...” • • • • • • •

“...Infinite Alphabets...” • • • • • •
“Alphabetic Coding...” • • • • •

“Redundancy-Related Bounds...” • • • •

C
on

fe
re
n
ce

“Rényi to Rényi...” • • • • • •
“...Conditional Branches...” • • • • •

“...D-ary...” • • • • • •
“Reserved-length...” • • • • •

“...Power Laws” • • • • •
“Tight Bounds...” • • • •

“...Tunstall Code...” • • • •
“...Redundancy of Huffman...” • • • •

Table 1: Nature of my published papers

I do in “Efficient Implementation of the Generalized Tunstall Code
Generation Algorithm,” where I propose an efficient realization of Tunstall’s
algorithm, requiring time proportional to the number of output symbols. This is
especially useful for inputs that are independent, but perhaps not binary or not
always the same probability. Tunstall’s algorithm is not optimal for symbols and
events that are not independent; however, the behavior of using Tunstall codes
for such data has been shown to be well behaved (SA Savari and RG Gallager,
“Generalized Tunstall Codes for Sources with Memory,” IEEE Transactions on

Information Theory, 1997).

16

