
Convex optimization and a relative entropy problem

(notes by Michael Baer)

Relative entropy, or Kullback-Leibler divergence, is defined as

D(p‖q) =
∑

x

p(x) log
p(x)

q(x)

where the base of log depends on the units in question. It is generally thought of in terms
of the penalty of coding according to probability q when the true probability is p. As such,
many interesting problems in and properties of information theory include relative entropy.

Consider the following problem: We are made, though ignorance or circumstance, to code
according to probability distribution q. At some point we know that the real distribution is
within R of probability distribution s; that is, it is some unknown p such that D(p‖s) ≤ R.
What then is the worst-case p? Formally, given positive R and probability mass functions q

and s, what is the value of p which achieves

max{p | D(p‖s)≤R} D(p‖q)?

This does not lend itself toward a straightforward Lagrangian solution, and it is not a convex
minimization (or concave maximization), so, even though the domain and function are both
convex, it is not a convex optimization. Nevertheless, under certain conditions, it can be
transformed into one.

Consider those problems in which there exists no candidate p(x) on the border of the simplex
— that is, no x and p such that p(x) = 0 and D(p‖s) ≤ R. Then the border of the constraint
is fully characterized by D(p‖s) = R.

Note that the objective D(p‖q) is convex in p. Therefore, the maximum value is achieved on
the border and this problem is equivalent to solving the problem constrained to D(p‖s) = R.
This, in turn, is equivalent to solving the minimization of R−D(p‖q) = D(p‖s)−D(p‖q) =
Ep(x)[log(s(x)) − log(q(x))] on this border, or, because this formulation of the problem is
linear in p (and thus both convex and concave), over D(p‖s) ≤ R. In other words,

max{p | D(p‖s)≤R} D(p‖q) = max{p | D(p‖s)=R} D(p‖q)

= R − min{p | D(p‖s)=R} D(p‖s) − D(p‖q)

= R − min{p | D(p‖s)≤R} Ep(x)[log(s(x)) − log(q(x))].

This, then, is a convex optimization problem (minimizing a linear function over a convex
domain) and is amenable to methods of solving such problems.

It is worthwhile to note that this analysis applies equally to Euclidean distance, although
the resulting linear objective is different and the problem is not as much of a challenge to
solve via other means.
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